See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331704555

Comparison of dielectric models and evaluation of the penetration depth of Lband S-band (NISAR mission) microwave SAR signals into the ground

Presentation · March 2019

Some of the authors of this publication are also working on these related projects:

NASA-ISRO Synthetic Aperture Radar (NISAR) Project View project

Persistent Scatter Interferometric Synthetic Aperture RADAR (PsInSAR) View project

Comparison of dielectric models and evaluation of the penetration depth of L-band S-band (NISAR mission) microwave SAR signals into the ground.

Abhilash Singh¹, Ganesh Kumar Meena¹, Shashi Kumar², Kumar Gaurav¹

¹Department of Earth and Environmental Sciences Indian Institute of Science Education and Research, Bhopal

²Indian Institute of Remote Sensing, ISRO, Dehradun

Presented by: Abhilash Singh, DST-INSPIRE Fellow

09-15 March 2019

1 / 27

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

Outline

- Soil moisture and Microwave remote sensing
- Penetration depth
- Permittivity

Models

- Relation between soil moisture and permittivity
- Dobson Vs. Hallikainen empirical model
- Dobson semi-empirical model

3 Results

4 Conclusion

Introduction: Soil moisture and it is important

Soil moisture is a measure of temporary storage of water contained in the soil pores.

Application of soil moisture: Flood monitoring, Crop monitoring, Hydrological modelling etc.

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

09-15 March 2019 3 / 27

Microwave remote sensing for soil moisture

- higher sensitivity towards the dielectric properties of soil
- ability to penetrate deep into the soil medium
- weather independent

Penetration depth

Penetration depth: sensitivity

• Target property

$$\delta_{p} = f(\overbrace{S, C, VWC}^{\epsilon = \epsilon' - j\epsilon''})$$

• Sensor property

$$\delta_{p} = f(\theta_{i}, \lambda)$$

Penetration depth: sensitivity

• Target property

$$\delta_{p} = f(\overbrace{S, C, VWC}^{\epsilon = \epsilon' - j\epsilon''})$$

• Sensor property

$$\delta_{p} = f(\theta_{i}, \lambda)$$

On combining both:

$$\delta_p = f(\epsilon, \lambda, \theta_i)$$

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

Penetration depth

09-15 March 2019 7 / 27

It is a measure of how easy or difficult to form an electric field inside of a medium.

Complex permittivity (ϵ) is define as

$$\epsilon = \epsilon' - j\epsilon''$$

- $\epsilon' = {\rm Dielectric\ constant}$
- ϵ'' = Dielectric loss factor

 ϵ' is the measure of how much energy from an external electric field is stored in a material. ϵ'' measures how much lossy a material is to an external electric field. i.e. how much energy is lost (converted to heat) in the material.

• Empirical models

- Dobson empirical model
- Hallikainen empirical model

• Empirical models

- Dobson empirical model
- Hallikainen empirical model

• Semi-empirical models

Dobson semi-empirical model

Dobson Vs. Hallikainen empirical model

Dobson model: [1.4 GHz, L & 5 GHz, C-band]

$$\epsilon = a_0 + (a_1 + b_1 S + c_1 C)w + (a_2 + b_2 S + c_2 C)w^2 + (a_3 + b_3 S + c_3 C)w^3$$

Hallikainen model: [<u>1.4</u>, 4, 6, 8, 10, 12, 14, 16, & 18 GHz, <u>L</u>, S, <u>C</u>, X, Ku -bands]

$$\epsilon = (a_0 + a_1S + a_2C) + (b_0 + b_1S + b_2C)w + (c_0 + c_1S + c_2C)w^2$$

where, S and C is the percentage of sand and clay respectively. w is the volumetric water content (VWC) in $[m^3/m^3]$

Dobson Vs. Hallikainen empirical model

Dobson model: [1.4 GHz, L & 5 GHz, C-band]

$$\epsilon = a_0 + (a_1 + b_1 S + c_1 C)w + (a_2 + b_2 S + c_2 C)w^2 + (a_3 + b_3 S + c_3 C)w^3$$

Hallikainen model: [<u>1.4</u>, 4, 6, 8, 10, 12, 14, 16, & 18 GHz, <u>L</u>, S, <u>C</u>, X, Ku -bands]

$$\epsilon = (a_0 + a_1S + a_2C) + (b_0 + b_1S + b_2C)w + (c_0 + c_1S + c_2C)w^2$$

where, S and C is the percentage of sand and clay respectively. w is the volumetric water content (VWC) in $[m^3/m^3]$

Both these empirical models are valid only up to a VWC of 50%

$$\epsilon' = [1 + (\frac{\rho_b}{\rho_s})(\epsilon_s^{\alpha}) + w^{\beta'} \epsilon_{fw}'^{\alpha} - w]^{\frac{1}{\alpha}}$$

$$\epsilon'' = [w^{\beta''} \epsilon_{fw}^{''\alpha}]^{\frac{1}{\alpha}}$$

where
$$\alpha$$
 = 0.65 & ρ_{S} = 2.66 g/cm^3

 $\beta' = 1.2748 - 0.519S - 0.152C$ & $\beta'' = 1.33797 - 0.603S - 0.166C$

${\it S}$ and ${\it C}$ represent the fraction of sand and clay in the soil

$$\epsilon_s = (1.01 + 0.44\rho_s)^2 - 0.062$$
 Its value ranges between 3 ~ 5

$$\epsilon_{fw}' = \epsilon_{w\infty}' + \frac{\epsilon_{wo} - \epsilon_{w\infty}}{1 + (2\pi f \tau_w)^2}$$

$$\epsilon_{fw}^{''} = \frac{2\pi f \tau_w (\epsilon_{wo}^{'} - \epsilon_{w\infty}^{'})}{1 + (2\pi f \tau_w)^2} + \frac{\sigma_{eff}(\rho_s - \rho_b)}{2\pi\epsilon_o f(\rho_s w)}$$

$$2\pi\tau_w = 0.58 \times 10^{-10}$$
 $\epsilon'_{wo} = 80.1$

 $\epsilon_{\it wo}:$ static dielectric constant for water

The high frequency limit of $\epsilon_{fw}^{'}$ is denoted by $\epsilon_{w\infty} = 4.9$

 $\sigma_{\rm eff} = -1.645 + 1.939\rho_b - 2.25622S + 1.594C$

Valid for frequencies 1.4-18 GHz

$$2\pi\tau_w = 0.58 \times 10^{-10}$$
 $\epsilon'_{wo} = 80.1$

 $\epsilon_{\it wo}:$ static dielectric constant for water

The high frequency limit of $\epsilon_{\textit{fw}}'$ is denoted by $\epsilon_{w\infty} = 4.9$

 $\sigma_{\it eff} = -1.645 + 1.939 \rho_b - 2.25622S + 1.594C$

Valid for frequencies 1.4-18 GHz

What to do for frequencies 0.3-1.3 GHz??

$$2\pi \tau_w = 0.58 \times 10^{-10}$$
 $\epsilon'_{wo} = 80.1$

 $\epsilon_{\it wo}:$ static dielectric constant for water

The high frequency limit of $\epsilon_{\rm fw}^{'}$ is denoted by $\epsilon_{\rm w\infty}=4.9$

$$\sigma_{\rm eff} = -1.645 + 1.939 \rho_b - 2.25622S + 1.594C$$

Valid for frequencies 1.4-18 GHz

What to do for frequencies 0.3-1.3 GHz??

. First change involves a linear correction to $\epsilon^{'}$ given by

$$\epsilon_{0.3-1.3 \textit{GHz}}^{'} = 1.156 \epsilon^{'} - 0.68$$

and second change involves in the value of effective conductivity given by $\sigma_{eff} = 0.0467 + 0.2204\rho_b - 0.4111S + 0.6614C$

Comparison between models

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

Comparison between models

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

Table: Physical properties of soil

Soil	Soil p	roportic	on (%)	Bulk density
type	Sand	Silt	Clay	(g/cm^3)
Sand	86.7	7.8	5.5	1.57
Loam	61.3	23.1	15.6	1.42
Clay	17.79	31.14	51.07	1.28

Result

Result

Result

We can observe different penetration depth for different soil type and Dobson semi-empirical estimated penetration depth varies a lot with soil texture followed by Hallikainen empirical and least variation in Dobson empirical estimated penetration depth. [For w = 0%]

Dobson empirical model

$$\begin{aligned} \epsilon &= a_0 + (a_1 + b_1 S + c_1 C)w \\ &+ (a_2 + b_2 S + c_2 C)w^2 \\ &+ (a_3 + b_3 S + c_3 C)w^3 \end{aligned}$$

Hallikainen empirical model

$$\epsilon = (a_0 + a_1S + a_2C) + (b_0 + b_1S + b_2C)w + (c_0 + c_1S + c_2C)w^2$$

NISAR PARAMETERS

Parameters	NISAR	Hallikainen	Dobson semi-empirical
L-Band	1.25 GHz	1.4 GHz	1.25 GHz
S-Band	3.22 GHz	4 GHz	3.22 GHz
Incidence	33° - 47°	_	-

Abhilash Singh (sabhilash@iiserb.ac.in) URSI Asia Pacific-Radio Science Conference

09-15 March 2019 23 / 27

Conclusion

- This study will give us approximate depth at which one should collect the in-situ measurements.
- All the models (Dobson empirical, Hallikainen empirical and Dobson semi-empirical models) are inconsistent, they yield different penetration depth for same set of parameters.
- Dobson semi-empirical estimated penetration depth varies a lot with soil texture followed by Hallikainen empirical and least variation in Dobson empirical estimated penetration depth.
- The penetration depth decreases significantly for first 10% increase in the soil moisture content, however, further increase in the soil moisture has a reduced effect on penetration depth.
- The penetration depth of the SAR signals decreases with increase in the soil moisture content, incident angle and frequency.
- The depth of penetration is more in L-band SAR signals as compared to the S-band SAR signals.
- Empirical models are site specific and valid for discrete sets of freq.

- This work was funded by the NASA-ISRO Synthetic Aperture Radar (NISAR) mission through grant Hyd-01.
- We would like to acknowledge IISER Bhopal and IIRS Dehradun for all the necessary institutional support.
- AS would like to thank to Department of Science and Technology, Govt. of India for providing research fellowship as DST-INSPIRE fellow.

References

A Falk (2018)

NASA-ISRO SAR mission science users handbook

Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M. A. and Wu, L.-K. (1985)

Microwave dielectric behavior of wet soil- part 1: Empirical models and experimental observations.

IEEE Transactions on Geoscience and Remote Sensing (1) pp. 2534.

Dobson, M. C., Kouyate, F. and Ulaby, F. T. (1984)

A reexamination of soil textural effects on microwave emission and backscattering *IEEE Transactions on Geoscience and Remote Sensing (6)* pp. 530536.

< A > < > > <

Contact Us How to Buy Sign In

✓ Windows ✓ macOS ✓ Linux

< < p>< < p>

https://in.mathworks.com/matlabcentral/fileexchange/68987-penetrationdepth-evaluation-at-l-and-s-band-sar-signals **Thank you for your kind attention !**

Abhilash Singh (Sabhilash@hserb.ac.in) URSI Asia Pacific-Radio Science Conference

09-15 March 2019 27 / 2